Google Scholar   ($Contributed equally, *Corresponding Author)


[32] Pandolfi EC, Hsu F-M, Duhon M, Zheng Y, Goldsmith S, Fu J, Silber SJ, Clark AT. In vitro germ cell induction from fertile and infertile monozygotic twin research participants. Cell Reports Medicine. 2022;3(10):100782.

[31] Zheng Y*, Yan RZ, Sun S, Kobayashi M, Xiang L, Yang R, Goedel A, Kang Y, Xue X, Esfahani SN, Liu Y, Resto Irizarry AM, Wu W, Li Y, Ji W, Niu Y, Chien KR, Li T, Shioda T, Fu J. Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell. 2022;29(9):1402-1419.e8. (featured by Cell Stem Cell)


[30] Yang R, Goedel A, Kang Y, Si C, Chu C, Zheng Y, Chen Z, Gruber PJ, Xiao Y, Zhou C, Witman N, Eroglu E, Leung C-Y, Chen Y, Fu J, Ji W, Lanner F, Niu Y, Chien KR. Amnion signals are essential for mesoderm formation in primates. Nature Communications. 2021;12(1):5126.

[29] Resto Irizarry AM, Esfahani SN, Zheng Y, Yan RZ, Kinnunen P, Fu J. Machine learning-assisted imaging analysis of a human epiblast model. Integrative Biology. 2021;13(9):221-229.

[28] Chen K, Zheng Y, Xue X, Liu Y, Resto Irizarry AM, Tang H, Fu J. Branching development of early post-implantation human embryonic-like tissues in 3D stem cell culture. Biomaterials. 2021;275:120898.

[27] Zheng Y, Fu JP. First complete model of the human embryo. Nature. 2021;591(7851).

[26] Zheng Y, Shao Y, Fu J. A microfluidics-based stem cell model of early post-implantation human development. Nature Protocols. 2021;16(1):309-326.


[25] Chen D, Sun N, Hou L, Kim R, Faith J, Aslanyan M, Tao Y, Zheng Y, Fu J, Liu W, Kellis M, Clark A. Human Primordial Germ Cells Are Specified from Lineage-Primed Progenitors. Cell Reports. 2019;29(13):4568-4582.e5.

[24] Zheng Y, Xue X, Resto-Irizarry AM, Li Z, Shao Y, Zheng Y, Zhao G, Fu J. Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Science Advances. 2019;5(12):eaax5933.

[23] Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN, Li Z, Muncie JM, Lakins JN, Weaver VM, Gumucio DL, Fu J. Controlled modelling of human epiblast and amnion development using stem cells. Nature. 2019;573(7774):421-425.

  • Commentary by Amander T. Clark, Nature, vol. 573, pp. 350-351, 2019. [PDF]
  • Highlighted by Nature News, “Embryo-like structures created from human stem cells“. (link)
  • Highlighted by Nature Podcast, “Modelling early embryos“. (link)
  • Highlighted by National Public Radio (NPR) News, “Scientists create a device that can mass-produce human embryoids“. (link)
  • Highlighted by BBC News, “Embryoids from stem cells“. (link)
  • Highlighted by MIT Technology Review, “Meet the ‘artificial embryos’ being called uncanny and spectacular“. (link)
  • Highlighted by Chemical & Engineering News (C&EN), “Microfluidic device brews human embryo-like structures“. (link)

[22] Lin F, Shao Y, Xue X, Zheng Y, Li Z, Xiong C, Fu J. Biophysical phenotypes and determinants of anterior vs. posterior primitive streak cells derived from human pluripotent stem cells. Acta Biomaterialia. 2019;86:125-134.

[21] Kotnala A, Zheng Y, Fu J, Cheng W. Back-focal-plane interferometric detection of nanoparticles in spatially confined microfluidic channels. Review of Scientific Instruments. 2019;90(2):023107.


[20] Xue X, Sun Y, Resto-Irizarry AM, Yuan Y, Aw Yong KM, Zheng Y, Weng S, Shao Y, Chai Y, Studer L, Fu J. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nature Materials. 2018;17(7):633-641.

[19] Xu Z, Zheng Y, Wang X, Shehata N, Wang C, Sun Y. Stiffness increase of red blood cells during storage. Microsystems & Nanoengineering. 2018;4(1):17103.


[18] Kotnala A, Zheng Y, Fu J, Cheng W. Microfluidic-based high-throughput optical trapping of nanoparticles. Lab on a Chip. 2017;17(12):2125-2134.

[17] Zheng Y$, Wang S$, Xue X, Xu A, Liao W, Deng A, Dai G, Liu AP, Fu J. Notch signaling in regulating angiogenesis in a 3D biomimetic environment. Lab on a Chip. 2017;17(11):1948-1959.


[16] Xu Z, Zheng Y, Wang X, Shehata N, Wang C, Xie S, Sun Y. Stiffening of sickle cell trait red blood cells under simulated strenuous exercise conditions. Microsystems & Nanoengineering. 2016;2(1):16061.

[15] Wei Y, Xu Z, Cachia MA, Nguyen J, Zheng Y, Wang C, Sun Y. Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy. Journal of Micromechanics and Microengineering. 2016;26(9):095006.

[14] Zheng Y, Sun Y, Yu X, Shao Y, Zhang P, Dai G, Fu J. Angiogenesis in Liquid Tumors: An In Vitro Assay for Leukemic-Cell-Induced Bone Marrow Angiogenesis. Advanced Healthcare Materials. 2016;5(9):1014-1024.


[13] Zheng Y, Wen J, Nguyen J, Cachia MA, Wang C, Sun Y. Decreased deformability of lymphocytes in chronic lymphocytic leukemia. Scientific Reports. 2015;5(1):7613.

[12] Zheng Y, Cachia MA, Ge J, Xu Z, Wang C, Sun Y. Mechanical differences of sickle cell trait (SCT) and normal red blood cells. Lab on a Chip. 2015;15(15):3138-3146.

[11] Nguyen J, Wei Y, Zheng Y, Wang C, Sun Y. On-chip sample preparation for complete blood count from raw blood. Lab on a Chip. 2015;15(6):1533-1544.


[10] Zheng Y, Chen J, Cui T, Shehata N, Wang C, Sun Y. Characterization of red blood cell deformability change during blood storage. Lab on a Chip. 2014;14(3):577-583.


[9] Shojaei-Baghini E, Zheng Y, Sun Y. Automated Micropipette Aspiration of Single Cells.  Annals of biomedical engineering. 2013;41(6):1208-1216.

[8] Zheng Y, Shojaei-Baghini E, Wang C, Sun Y. Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells. Biosensors and Bioelectronics. 2013;42:496-502.

[7] Shojaei-Baghini E$, Zheng Y$, Jewett MAS, Geddie WB, Sun Y. Mechanical characterization of benign and malignant urothelial cells from voided urine. Applied Physics Letters. 2013;102(12):123704.

[6] Zheng Y, Nguyen J, Wei Y, Sun Y. Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab on a Chip. 2013;13(13):2464-2483.

[5] Zheng Y, Nguyen J, Wang C, Sun Y. Electrical measurement of red blood cell deformability on a microfluidic device. Lab on a Chip. 2013;13(16):3275-3283.


[4] Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y. High-throughput biophysical measurement of human red blood cells. Lab on a Chip. 2012;12(14):2560-2567.


[3] Zheng Y, Sun Y. Microfluidic devices for mechanical characterisation of single cells in suspension. Micro & Nano Letters. 2011;6(5):327-331.

[2] Chen J$, Zheng Y$, Tan Q, Zhang YL, Li J, Geddie WR, Jewett MAS, Sun Y. A microfluidic device for simultaneous electrical and mechanical measurements on single cells. Biomicrofluidics. 2011;5(1):014113.

[1] Chen J$, Zheng Y$, Tan Q, Shojaei-Baghini E, Zhang YL, Li J, Prasad P, You L, Wu XY, Sun Y. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells. Lab on a Chip. 2011;11(18):3174-3181.